BRENTON MALLEN

DATA SCIENCE: FROM MODEL
10 MICROSERVICE

INTRO | BACKGROUND | BUILD MODEL | BUILD SERVICE | CONCLUSION

2

BIO

Masters in Ocean Engineering

Underwater mine detection and classification using sonar image processing

Data Scientist
Cyber Security

Performing R&D, ad hoc analyses and building production ML systems for internet bot
detection and mitigation

Agriculture

Satellite image processing and time series modeling

@BrentonMallen | www.brentonmallen.com

http://www.brentonmallen.com

INTRO | BACKGROUND | BUILD MODEL | BUILD SERVICE | CONCLUSION

3

MOTIVATION

Frustration with tutorials not discussing what to do
with a model after you've trained it

INTRO | BACKGROUND | BUILD MODEL | BUILD SERVICE | CONCLUSION 4

INTENT

lllustrate an approach to a product development cycle
of getting data, building a machine learning model|
and turning it into something that can be used by
others.

INTRO

Problem Background
Build a Machine Learning Model

Build a Web App/API (Microservice)

Demo

Code Snippets along the way!

Source Code

INTRO | BACKGROUND | BUILD MODEL | BUILD SERVICE | CONCLUSION

6

LANGUAGES & TECH

Python

scikit-learn, pandas, flask, zappa
HTML
Javascript
Amazon Web Services (AWS)

Lambda, APl Gateway

THE PROBLEM
BACKGROUND

INTRO | BACKGROUND | BUILD MODEL

| BUILD SERVICE | CONCLUSION 8

THE TITANIC PROBLEM

Objective:

Predict if a passenger would have
survived the titanic

https://www.kaggle.com/c/titanic

https://www.kaggle.com/c/titanic

BACKGROUND

Training Set
891 records
Label: Survival
Test Set

418 records

Data Variables
Survival
Ticket class
Sex

Age in years

of siblings / spouses aboard

of parents / children aboard
Ticket number

Passenger fare

Cabin number

Port of Embarkation

BUILD A MODEL

INTRO | BACKGROUND | BUILD MODEL | BUILD SERVICE | CONCLUSION 11

What does every ML model need?

7 ‘g \\e—'l“

FEAI “ n Es HISTORY.COM

INTRO | BACKGROUND | BUILD MODEL | BUILD SERVICE | CONCLUSION 12

CHOOSING & ENGINEERING FEATURES

Removed ship location related Data Variables
features Ticket class

Sex

Not particularly useful without
knowledge of the ship layout

Age in years

of siblings / spouses aboard

of parents / children aboard

New features:
Age and Fare groups Passenger fare

s Alone

Port of Embarkation

BUILD MODEL

Small Set

891 Train Records

418 Test Records

Categorical Data
Missing Data

Passengerld Survived Pclass Name Sex Ticket Fare Embarked

1 0 3 Braund, Mr. Owen Harris male ; A/5 21171 7.2500 S

Cumings, Mrs. John Bradley

(Florence Briggs Th... female : PC 17599 71.2833 C

2 1 1

- . . STON/O2.
Heikkinen, Miss. Laina female . 3101282 7.9250

Futrelle, Mrs. Jacques Heath

(Lily May Peel) female . 113803 53.1000

Allen, Mr. William Henry male . 373450 8.0500

INTRO | BACKGROUND | BUILD MODEL | BUILD SERVICE | CONCLUSION 14

MISSING DATA

Selecting Most Common

most common embark - df['Embarked'].mode () [0]
df["Embarked'] df["Embarked'] .fillna (most common embark)

Selecting Median Value

test data['Fare'] test data['Fare'].fillna(test data['Fare'].median())
test data['Fare'] test data['Fare'].apply(fare groups)

INTRO | BACKGROUND | BUILD MODEL | BUILD SERVICE | CONCLUSION 15

MISSING DATA

Predict Using a Classifier*

age features [f for £ in utils.FEATURES if f 'Age']

age clf = utils.missing clf (traix;_data, Train a classifier on the
age features < : . T
'Age ' field with missing data
)
train data['Age'] (train data.
apply (. (e .
lambda x: utils.predict encode age (< Use the classifier to fill
X, missing data
age features,

age clf
) 1

*Using the output of a classifier as features
for another classifier can lead to latent
interactions and increased tuning complexity

INTRO | BACKGROUND | BUILD MODEL | BUILD SERVICE | CONCLUSION 16

ENCODING CATEGORICAL FEATURES

Sex Encoding

SEX MAPPING {'female': 0, "'male': 1}

encode the sex data
train data['Sex'] train data['Sex'] .map(utils.SEX MAPPING)

Embarked Encoding

encoding {f: i for i, £ in enumerate (df['Embarked'].unique()) }
df["Embarked'] df["Embarked'] .map (encoding)

INTRO | BACKGROUND | BUILD MODEL

BUILD SERVICE | CONCLUSION

17

ENGINEERED FEATURES

Fare Encoding

def fare groups(fare: float)
This function puts Fares into groups based of
a defined interval
:param fare:
:return:

mmn

if fare 7.78

return 0O

elif 7.78 fare 8.66
return 1

elif 8.66 fare 14.45
return 2

elif 14.45 fare 26.0
return 3

elif 26.0 fare 52.37
return 4

elif 52.37 fare 512.33
return 5

else

return 6

Age Encoding

mmn

This function creates age groups

mmn

if age 10

return
elif 10
return
elif 18
return
elif 26
return
elif 36
return
elif 48
return
else
return

def age groups (age)

0
age
1
age
2
age
3
age
[
age

18

26

36

48

56

INTRO | BACKGROUND | BUILD MODEL | BUILD SERVICE | CONCLUSION 18

ENGINEERED FEATURES

Is Alone

def is alone(row: pd.Series)
This function is used to determine if a passenger was not traveling with
anyone else
:param row: row of titanic data
:return: binary output of whether and passenger was traveling alone
family size row['SibSp'] row|['Parch']
if family size 0
return 1
else
return 0

If the passenger has no spouse, sibling, parent or child

BUILD MODEL

Pclass Sex Age SibSp Parch Fare Embarked Alone

INTRO | BACKGROUND | BUILD MODEL | BUILD SERVICE | CONCLUSION 20

TRAIN A MODEL

def train() -> RandomForestClassifier
Train a random forest classifier on some training data
:return: trained classifier

mmn

train data process data(utils.TRAIN FILE)

clf RandomForestClassifier (300, An attempt to mitigate
7
5, overfitting due to small
0.5, sample size
True,
L,
42

)
clf.fit (train data[utils.CLASS FEATURES], train data[utils.LABEL])
return clf

INTRO | BACKGROUND | BUILD MODEL | BUILD SERVICE | CONCLUSION 21

MODEL INSPECTION

Cross Validation

from sklearn.model selection import cross val score

scores = cross val score(survival clf,
encoded train[CLASS FEATURES],
encoded train[LABEL],

10,
'accuracy'
)
print (f" mn
Accuracy (95% CI):
{round (scores.mean(), 3)} (+/- {round(scores.std() 2, 3)})
)
Accuracy* (95% Cl):
0.823 (+/- 0.076)

*This is classification accuracy, which is the performance
metric used for the Kaggle competition

BUILD MODEL

Feature Importance

Feature Importance
Sex 0.51589
Ticket Class 0.15865
Fare 0.11274

Age 0.09403

of siblings / spouses 0.04831
aboard

Embarked 0.03169

e Y PR e 10 # of parents / children 0.02158
Women and Children First aboard

by: Fortunino Matania
Alone 0.01799

INTRO | BACKGROUND | BUILD MODEL | BUILD SERVICE | CONCLUSION

23

MODEL PERFORMANCE

Embarked fill and encod

fill encode embark (test_data)
t Sex encoding

G ath er Featu res fest_data ["Sex"'] test data['Sex'].map (sex mapping)

on Test Data

Age prediction
test data['Age' test_data.apply(
lambda x: predict encode age (x,
age features,
age_clf
) s
il

)

. . test data['Fare'] test data['Fare'].apply(fare groups)
Predict Survival test data['Alone'] - test data.apply(is_alone, 1)

on Test Data

Test Accuracy: 0.78947*

*Baseline classifier (sex as label) score: 0.76555

test data raw_test.copy() # retain original since changes are in place

test data['Fare'] test data['Fare'].fillna(test data['Fare'].median())

—Jp test data['Survived'] survival clf.predict (test data[CLASS FEATURES])

BUILD A WEB APP
| API SERVICE

INTRO | BACKGROUND | BUILD MODEL | BUILD SERVICE | CONCLUSION 25

ARCHITECTURE DIAGRAM

HTTP Request Routed Request |
< <
JSON Payload JSON Payload
A

Model Calculated
Decision Features

INTRO | BACKGROUND | BUILD MODEL | BUILD SERVICE | CONCLUSION 26

API

Flask App

@app.route('/"', ['"GET'])
def index (name=None)

Main landing page

:param name:

:return:

Resource o

return render template('titanic.html',

Method

@app.route('/titanic’', ["POST'])
def predict survival () -> Response
Perform survival prediction based off form input
:return: flask response with prediction output and status code 200

clf = utils.load model(utils.MODEL LOC,
_utils.MODEL NAME

)
prediction clf.predict (get featu

res ()) [0] Return Prediction
return Response (.4____—________————“’_—_—____—_—_—
format prediction (prediction),

200

INTRO | BACKGROUND | BUILD MODEL | BUILD SERVICE | CONCLUSION 27

<html lang="en">

<head>
WEB APP <meta charset="UTF-8">

<script src="https://ajax.googleapis.com/ajax/libs/jquery/3.3.1/jquery.min.js"></script>
<script src="static/js/script.js"></script>
<link rel="stylesheet"
href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/css/bootstrap.min.css">
<title>Titanic Survival</title>
. </head>
Javascript <body>
<hl>Titanic Survival</hl>
This is a small application to determine if a passenger would likely survive
the titanic.

<div class="container">
Form & Action el <fOXrm action="/dev/titanic" method="POST" enctype="multipart/form-data">
<table style="width:30%">

<tr>
<td><p align="center">Ticket Class:</p></td>
<td>
User InPUt —Jp <select name="Pclass">
<option value="1">First</option>
<option value="2">Second</option>
<option value="3">Third</option>
</select>
Result </td>
</tr>
</table>

<input id="submit" type="submit" name="submit"
style="height:30px;width:125px" />

<p>Result:</p>
<pre class="output"></pre>
</form>

BUILD SERVICE

itanic Survival

his is a small application to determine if a passenger would likely survive the titanic.

Ticket Class: First)
Sex: Female [
Age: 21 o
User InPUt Spouse/Sibling
Form Count:
Parent/Child

Count: 0 =

Ticket Fare: 25.00

Embark Location: Southampton |¢)

Alone:
No (¥

Send Input -
to API
Result:

{
"Survival': "Likely"

Display Model
Output

}

Created by Brenton Mallen ©2018

INTRO | BACKGROUND | BUILD MODEL | BUILD SERVICE | CONCLUSION 29

WEB APP

JavaScript

. . $ (fFunction() {
Llnk to Smelt ps ('input[type="submit"] ') .click (function (event) {

Button var $form = $ (this) .parent ();

Sform.find('.output') .text ("")
/ s.ajax ({
url: S$Sform.attr('action'),
Take Form data: S$form.serialize(),

Input type: 'POST',

success: function (response) {

Sform.find('.output') .text (JSON.stringify (JSON.parse (response), null, 2))
console.log (response) ;

s
Make AJAX error: function (error) ({
Ca" to API Sform.find('.output') .text (error.responseText)
console.log(error) ;
}
}) i
Return Result event .preventDefault ()

})

(or Error) by ;

INTRO | BACKGROUND | BUILD MODEL | BUILD SERVICE | CONCLUSION 30

DEPLOYMENT

Zappa config*

{
. . "dev": {
Application » "app function”: "titanic.app",
"aws region": "us-east-1",
"profile name": "default",
"project name": "titanic-survival",
Environment » "runtime": "python3.6",
"s3 bucket": "titanic-survival",
"lambda description": "Function to determine if an passenger would survive the titanic",
"manage roles": ’
IAM Role p "role name": "titanic-survival-dev-ZappalambdaExecutionRole",
"role arn": ll"'
"slim handler":
b,
"dev _ap northeast 1": {
o "aws region": "ap-northeast-1",
Regions > rextends”: "dev"
|
"dev _ap south 1": {
"aws region": "ap-south-1",
"extends": "dev"

by

"dev _ap southeast 1": {

"aws region": "ap-southeast-1",
"extends": "dev"

®

®

o

* Zappa requires an AWS account as well as an IAM role and policy

INTRO | BACKGROUND | BUILD MODEL | BUILD SERVICE | CONCLUSION 31

DEPLOYMENT

Zappa Commands*

ZAPPA

deploy:

(source $(VENV) /activate && zappa deploy $(ZAPPA ENV))

.PHONY: redeploy
U pdate > redeploy:

(source $(VENV)/activate && zappa update $(ZAPPA ENV))

.PHONY: remove

DeStroy remove :
(source $(VENV)/activate && zappa undeploy $(ZAPPA ENV))
.PHONY: logs
Inspect » logs:

(source $(VENV)/activate && zappa tail $(ENV))

* Commands shown have been compiled into a Makefile for convenience

DEMO TIME

INTRO | BACKGROUND | BUILD MODEL | BUILD SERVICE | CONCLUSION 33

PRODUCTION NEXT STEPS

Continuous Integration / Deployment
AWS CodePipeline/CodeBuild, Jenkins, etc.
Monitoring / Dashboards

AWS Cloudwatch, DataDog, etc.

INTRO | BACKGROUND | BUILD MODEL | BUILD SERVICE | CONCLUSION 34

POSSIBLE TWEAKS

Classifier Model
Perform grid search on hyper-parameters
Try a different model or feature set
App / API
Improve app styling using CSS
Add DNS to make it more approachable

Add caching for performance

INTRO | BACKGROUND | BUILD MODEL | BUILD SERVICE | CONCLUSION 35

ANOTHER APPLICATION

Using this methodology we can make other apps as well

Board Game Similarity

http://www.bg-similarity.com

INTRO | BACKGROUND | BUILD MODEL | BUILD SERVICE | CONCLUSION 36

QUESTIONS?

an'in
.

Slides

